Pandas Data Manipulation Cheat Sheet



For working with data in python, Pandas is an essential tool you must use. This is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

  • The Pandas apply function can be used to apply a function on every value in a column or row of a DataFrame, and transform that column or row to the resulting values. By default, it will apply a function to all values of a column. To perform it on a row instead, you.
  • Cheatsheets / Data Manipulation with Pandas. Multiple Tables in Pandas. Print Cheatsheet. Introduction to Pandas. Aggregates in Pandas. Multiple Tables in Pandas. Efficient Data Storage with Multiple Tables. For efficient data storage, related information is often spread across multiple tables of a database. Consider an e-commerce.

Pandas Cheat Sheet for Python For working with data in python, Pandas is an essential tool you must use. This is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Read and Write to CSV. pd.readcsv('file.csv', header=None, nrows=5). PYTHON FOR DATA SCIENCE CHEAT SHEET Python Pandas It is a library that provides easy to use data structure and data analysis tool for Python Programming Language. W h a t i s P a n d a s? Import pandas as pd – Import pasdas I m p o r t C o n v e n t i o n FURTHERMORE: Python for Data Science Certification Training Course. Series.

But even when you’ve learned pandas in python, it’s easy to forget the specific syntax for doing something. That’s why today I am giving you a cheat sheet to help you easily reference the most common pandas tasks.

It’s also a good idea to check to the official pandas documentation from time to time, even if you can find what you need in the cheat sheet. Reading documentation is a skill every data professional needs, and the documentation goes into a lot more detail than we can fit in a single sheet anyway!

Importing Data:

Use these commands to import data from a variety of different sources and formats.

Exporting Data:

Use these commands to export a DataFrame to CSV, .xlsx, SQL, or JSON.

Manipulation

Viewing/Inspecting Data:

Use these commands to take a look at specific sections of your pandas DataFrame or Series.

Selection:

Use these commands to select a specific subset of your data.

Data Cleaning:

Use these commands to perform a variety of data cleaning tasks.

Filter, Sort, and Groupby:

Use these commands to filter, sort, and group your data.

Join/Combine:

Use these commands to combine multiple dataframes into a single one.

Statistics:

These commands perform various statistical tests. (They can be applied to a series as well)

I hope this cheat sheet will be useful to you no matter you are new to python who is learning python for data science or a data professional. Happy Programming.

You can alsodownload the printable PDF file from here.

.

Pandas is an open-source Python library that is powerful and flexible for data analysis. If there is something you want to do with data, the chances are it will be possible in pandas. There are a vast number of possibilities within pandas, but most users find themselves using the same methods time after time. In this article, we compiled the best cheat sheets from across the web, which show you these core methods at a glance.

The primary data structure in pandas is the DataFrame used to store two-dimensional data, along with a label for each corresponding column and row. If you are familiar with Excel spreadsheets or SQL databases, you can think of the DataFrame as being the pandas equivalent. If we take a single column from a DataFrame, we have one-dimensional data. In pandas, this is called a Series. DataFrames can be created from scratch in your code, or loaded into Python from some external location, such as a CSV. This is often the first stage in any data analysis task. We can then do any number of things with our DataFrame in Pandas, including removing or editing values, filtering our data, or combining this DataFrame with another DataFrame. Each line of code in these cheat sheets lets you do something different with a DataFrame. Also, if you are coming from an Excel background, you will enjoy the performance pandas has to offer. After you get over the learning curve, you will be even more impressed with the functionality.

Whether you are already familiar with pandas and are looking for a handy reference you can print out, or you have never used pandas and are looking for a resource to help you get a feel for the library- there is a cheat sheet here for you!

1. The Most Comprehensive Cheat Sheet

This one is from the pandas guys, so it makes sense that this is a comprehensive and inclusive cheat sheet. It covers the vast majority of what most pandas users will ever need to do to a DataFrame. Have you already used pandas for a little while? And are you looking to up your game? This is your cheat sheet! However, if you are newer to pandas and this cheat sheet is a bit overwhelming, don’t worry! You definitely don’t need to understand everything in this cheat sheet to get started. Instead, check out the next cheat sheet on this list.

2. The Beginner’s Cheat Sheet

Dataquest is an online platform that teaches Data Science using interactive coding challenges. I love this cheat sheet they have put together. It has everything the pandas beginner needs to start using pandas right away in a friendly, neat list format. It covers the bare essentials of each stage in the data analysis process:

  • Importing and exporting your data from an Excel file, CSV, HTML table or SQL database
  • Cleaning your data of any empty rows, changing data formats to allow for further analysis or renaming columns
  • Filtering your data or removing anomalous values
  • Different ways to view the data and see it’s dimensions
  • Selecting any combination of columns and rows within the DataFrame using loc and iloc
  • Using the .apply method to apply a formula to a particular column in the DataFrame
  • Creating summary statistics for columns in the DataFrame. This includes the median, mean and standard deviation
  • Combining DataFrames

3. The Excel User’s Cheat Sheet

Ok, this isn’t quite a cheat sheet, it’s more of an entire manifesto on the pandas DataFrame! If you have a little time on your hands, this will help you get your head around some of the theory behind DataFrames. It will take you all the way from loading in your trusty CSV from Microsoft Excel to viewing your data in Jupyter and handling the basics. The article finishes off by using the DataFrame to create a histogram and bar chart. For migrating your spreadsheet work from Excel to pandas, this is a fantastic guide. It will teach you how to perform many of the Excel basics in pandas. If you are also looking for how to perform the pandas equivalent of a VLOOKUP in Excel, check out Shane’s article on the merge method.

4. The Most Beautiful Cheat Sheet

If you’re more of a visual learner, try this cheat sheet! Many common pandas tasks have intricate, color-coded illustrations showing how the operation works. On page 3, there is a fantastic section called ‘Computation with Series and DataFrames’, which provides an intuitive explanation for how DataFrames work and shows how the index is used to align data when DataFrames are combined and how element-wise operations work in contrast to operations which work on each row or column. At 8 pages long, it’s more of a booklet than a cheat sheet, but it can still make for a great resource!

5. The Best Machine Learning Cheat Sheet

Much like the other cheat sheets, there is comprehensive coverage of the pandas basic in here. So, that includes filtering, sorting, importing, exploring, and combining DataFrames. However, where this Cheat Sheet differs is that it finishes off with an excellent section on scikit-learn, Python’s machine learning library. In this section, the DataFrame is used to train a machine learning model. This cheat sheet will be perfect for anybody who is already familiar with machine learning and is transitioning from a different technology, such as R.

6. The Most Compact Cheat Sheet

Data Camp is an online platform that teaches Data Science with videos and coding exercises. They have made cheat sheets on a bunch of the most popular Python libraries, which you can also check out here. This cheat sheet nicely introduces the DataFrame, and then gives a quick overview of the basics. Unfortunately, it doesn’t provide any information on the various ways you can combine DataFrames, but it does all fit on one page and looks great. So, if you are looking to stick a pandas cheat sheet on your bedroom wall and nail home the basics, this one might be for you! The cheat sheet finishes with a small section introducing NaN values, which come from NumPy. These indicate a null value and arise when the indices of two Series don’t quite match up in this case.

7. The Best Statistics Cheat Sheet

While there aren’t any pictures to be found in this sheet, it is an incredibly detailed set of notes on the pandas DataFrame. This cheat shines with its complete section on time series and statistics. There are methods for calculating covariance, correlation, and regression here. So, if you are using pandas for some advanced statistics or any kind of scientific work, this is going to be your cheat sheet.

Where to go from here?

Sql To Pandas Cheat Sheet

For just automating a few tedious tasks at work, or using pandas to replace your crashing Excel spreadsheet, everything covered in these cheat sheets should be entirely sufficient for your purposes.

Pandas visualization cheat sheet

Data Manipulation Using Pandas

If you are looking to use pandas for Data Science, then you are only going to be limited by your knowledge of statistics and probability. This is the area that most people lack when they try to enter this field. I highly recommend checking out Think Stats by Allen B Downey, which provides an introduction to statistics using Python.

For those a little more advanced, looking to do some machine learning, you will want to start taking a look at the scikit-learn library. Data Camp has a great cheat sheet for this. You will also want to pick up a linear algebra textbook to understand the theory of machine learning. For something more practical, perhaps give the famous Kaggle Titanic machine learning competition.

Pandas Data Manipulation Cheat Sheet

Learning about pandas has many uses, and can be interesting simply for its own sake. However, Python is massively in demand right now, and for that reason, it is a high-income skill. At any given time, there are thousands of people searching for somebody to solve their problems with Python. So, if you are looking to use Python to work as a freelancer, then check out the Finxter Python Freelancer Course. This provides the step by step path to go from nothing to earning a full-time income with Python in a few months, and gives you the tools to become a six-figure developer!

Pandas Cheat Sheet Pdf

Related Posts